Call us toll-free

copper(II) sulfate pentahydrate (CHEBI:31440) - EMBL-EBI

How to Cite. Hoffman, R. V. 2001. Copper(II) Sulfate. e-EROS Encyclopedia of Reagents for Organic Synthesis. .

Approximate price

Pages:

275 Words

$19,50

Crystal Blue, Copper Sulfate, Algaecide - Agri Supply

AB - Abstract: The synthesis of copper nanoparticles (CuNPs) by surfactant-assisted chemical reduction method was studied aiming to identify and quantify the role of kinetic and capping on particle size distribution. The use of a strong and a mild reducing agent (hydrazine, d-glucose) has been investigated as well as the use of three different capping agents: cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP). Experimental tests were arranged according to factorial designs. CuNPs were characterized by XRD, FE-SEM and UV–Vis spectrophotometry. Particle size distribution was determined by image analysis and significance of investigated factors was statistically assessed by analysis of variance. Under the investigated conditions, CTAB was found capable of preventing oxidation but it had a significant positive effect on nanoparticle size (about 40 and 30 nm); SDS determined a good size control but no stabilization, whilst PVP could provide both size control (significant negative effect of about 15 and 25 nm) and stability. Average size of CuNPs can be significantly reduced of about 50 nm by replacing d-glucose with hydrazine. Graphical Abstract: [Figure not available: see fulltext.]

Copper is a chemical element with symbol Cu (from Latin: cuprum) and atomic number 29

For example, it was found that a solid mixture of and copper sulfate pentahydrate oxidized secondary alcohols to ketones in high yields; however, primary alcohols were not oxidized under the same conditions. This selectivity is quite unusual since under homogeneous conditions potassium permanganate vigorously oxidizes both primary and secondary alcohols.

Copper(II) carbonate - Wikipedia

CuSO4 ..

N2 - Abstract: The synthesis of copper nanoparticles (CuNPs) by surfactant-assisted chemical reduction method was studied aiming to identify and quantify the role of kinetic and capping on particle size distribution. The use of a strong and a mild reducing agent (hydrazine, d-glucose) has been investigated as well as the use of three different capping agents: cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP). Experimental tests were arranged according to factorial designs. CuNPs were characterized by XRD, FE-SEM and UV–Vis spectrophotometry. Particle size distribution was determined by image analysis and significance of investigated factors was statistically assessed by analysis of variance. Under the investigated conditions, CTAB was found capable of preventing oxidation but it had a significant positive effect on nanoparticle size (about 40 and 30 nm); SDS determined a good size control but no stabilization, whilst PVP could provide both size control (significant negative effect of about 15 and 25 nm) and stability. Average size of CuNPs can be significantly reduced of about 50 nm by replacing d-glucose with hydrazine. Graphical Abstract: [Figure not available: see fulltext.]

Abstract: The synthesis of copper nanoparticles (CuNPs) by surfactant-assisted chemical reduction method was studied aiming to identify and quantify the role of kinetic and capping on particle size distribution. The use of a strong and a mild reducing agent (hydrazine, d-glucose) has been investigated as well as the use of three different capping agents: cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP). Experimental tests were arranged according to factorial designs. CuNPs were characterized by XRD, FE-SEM and UV–Vis spectrophotometry. Particle size distribution was determined by image analysis and significance of investigated factors was statistically assessed by analysis of variance. Under the investigated conditions, CTAB was found capable of preventing oxidation but it had a significant positive effect on nanoparticle size (about 40 and 30 nm); SDS determined a good size control but no stabilization, whilst PVP could provide both size control (significant negative effect of about 15 and 25 nm) and stability. Average size of CuNPs can be significantly reduced of about 50 nm by replacing d-glucose with hydrazine. Graphical Abstract: [Figure not available: see fulltext.]

Aerobic Copper-Catalyzed Organic Reactions - …

Verdigris Synthesis The copper sulfate is white color and grainy like It from CHEM 1045 at Virginia Tech

Copper sulfate pentahydrate (CuSO4.5H2O) is the most common form of this chemical.

It is prepared by different methods, and electrolysis is one of these.

We will use a water soluble salt of Cu2+ as a starting point for our synthesis; Copper Sulfate Pentahydrate
Order now
  • Copper | Linus Pauling Institute | Oregon State University

    Use Crystal Blue ® copper sulfate smart crystals as an algaecide on actively growing algae mats in your pond.

  • Synthesis of amides - Organic chemistry

    Copper - Wikipedia

  • SDS Search - EH&S - Western Kentucky University

    Copper(II) carbonate or cupric carbonate is a chemical compound with formula CuCO 3

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order