Call us toll-free

C 8 - Photosynthesis and Respiration - DFJHS Science

Photosynthesis and Cellular Respiration – Understanding the Basics of Bioenergetics and Biosynthesis (revised 5/2017)

Approximate price


275 Words


Two of these are photosynthesis and cellular respiration.

This analysis and discussion activity introduces students to the molecular and cellular biology of cancer, including the important contributions of mutations in genes that code for proteins involved in regulating the rate of cell division. The questions in this activity challenge students to interpret the information presented in prose, tables and diagrams and apply their knowledge of basic molecular and cellular biology in order to understand multiple aspects of the biology of cancer, including the contributions of a variety of environmental exposures to increased risk for different types of cancer and the long lag between exposure to carcinogens and the diagnosis of cancer. (NGSS)

I can describe the major steps of photosynthesis and cellular respiration including ..

This analysis and discussion activity introduces students to the biology of HIV infection and treatment, including the molecular biology of the HIV virus lifecycle and the importance of understanding molecular biology and natural selection for developing effective treatments. The questions in this activity challenge students to apply their understanding of basic molecular and cellular biology and natural selection and interpret the information presented in prose and diagrams in order to understand multiple aspects of the biology of HIV/AIDS and treatment. (NGSS)

The Link between Photosynthesis and Cellular Respiration

Cellular Respiration and Photosynthesis - TeacherTube

As with enzymes, the molecules used in biological processes are often huge and complex, but ATP energy drives all processes and that energy came from either potential chemical energy in Earth’s interior or sunlight, but even chemosynthetic organisms rely on sunlight to provide their energy. The Sun thus powers all life on Earth. The cycles that capture energy (photosynthesis or chemosynthesis) or produce it (fermentation or respiration) generally have many steps in them, and some cycles can run backwards, such as the . Below is a diagram of the citric acid (Krebs) cycle. (Source: Wikimedia Commons)

As with other early life processes, the first photosynthetic process was different from today’s, but the important result – capturing sunlight to power biological processes – was the same. The scientific consensus today is that a respiration cycle was modified, and a in a was used for capturing sunlight. Intermediate stages have been hypothesized, including the cytochrome using a pigment to create a shield to absorb ultraviolet light, or that the pigment was part of an infrared sensor (for locating volcanic vents). But whatever the case was, the conversion of a respiration system into a photosynthetic system is considered to have only happened , and all photosynthesizers descended from that original innovation.

Cellular Respiration and Photosynthesis Science

Describe or draw a diagram of the relationship between Photosynthesis and ..

Polar forests reappeared in the Eocene after the , and the Eocene’s was the Cenozoic’s warmest time and . Not only did alligators live near the North Pole, but the continents and oceans hosted an abundance and diversity of life that Earth may have not seen before or since. That ten million year period ended as Earth began cooling off and headed toward the current ice age, and it has been called the original Paradise Lost. One way that methane has been implicated in those hot times is that leaves have , which regulate the air they take in to obtain carbon dioxide and oxygen, needed for photosynthesis and respiration. Plants also lose water vapor through their stomata, so balancing gas input needs against water losses are key stomata functions, and it is thought that in periods of high carbon dioxide concentration, . Scientists can count stomata density in fossil leaves, which led some scientists to conclude that carbon dioxide levels were not high enough to produce the PETM, so that produced the PETM and , and the controversy and research continues.

It can be helpful at this juncture to grasp the cumulative impact of , inventing , inventing , inventing that made possible, and inventing . Pound-for-pound, the complex organisms that began to dominate Earth’s ecosphere during the Cambrian Period consumed energy about 100,000 times as fast as the Sun produced it. Life on Earth is an incredibly energy-intensive phenomenon, powered by sunlight. In the end, only so much sunlight reaches Earth, and it has always been life’s primary limiting variable. Photosynthesis became more efficient, aerobic respiration was an order-of-magnitude leap in energy efficiency, the oxygenation of the atmosphere and oceans allowed animals to colonize land and ocean sediments and even fly, and life’s colonization of land allowed for a . Life could exploit new niches and even help create them, but the key innovations and pioneering were achieved long ago. If humanity attains the , new niches will arise, even of the , but all other creatures living on Earth have constraints, primarily energy constraints, which produce very real limits. Life on Earth has largely been a for several hundred million years, but the Cambrian Explosion was one of those halcyonic times when animal life had its greatest expansion, not built on the bones of a mass extinction so much as blazing new trails.

and Cellular Respiration Venn-diagram ..
Order now
  • Cellular Respiration & Photosynthesis Ch 15.

    The diagram shows how light energy from the Sun drives the processes of photosynthesis and cellular respiration

  • Photosynthesis and Cell Respiration

    Get an answer for 'What is the difference between photosynthesis and respiration?' and find homework help ..

  • BBC - GCSE Bitesize: Photosynthesis and respiration

    Explain how cells get energy from cellular respiration; Compare and contrast Photosynthesis with Cellular Respiration

Order now

Photosynthesis And Cellular Respiration Relationship gallery

The respiration and photosynthesis cycles in complex organisms have been the focus of a great deal of scientific effort, and cyclic diagrams (, ) can provide helpful portrayals of how cycles work. Photosynthesis has several cycles in it, and Nobel Prizes were awarded to the scientists who helped describe the cycles. Chlorophyll molecules , with magnesium in their porphyrin cages, and long tails. Below is a diagram of a chlorophyll molecule. (Source: Wikimedia Commons)

Plant cell respiration and photosynthesis

In the earliest days of life on Earth, it had to solve the problems of how to reproduce, how to separate itself from its environment, how to acquire raw materials, and how to make the chemical reactions that it needed. But it was confined to those areas where it could take advantage of briefly available potential energy as . The earliest process of skimming energy from energy gradients to power life is called respiration. That earliest respiration is today called because there was virtually no free oxygen in the atmosphere or ocean in those early days. Respiration was life’s first energy cycle. A biological energy cycle begins by harvesting an energy gradient (usually by a proton crossing a membrane or, in photosynthesis, directly capturing photon energy), and the acquired energy powered chemical reactions. The cycle then proceeds in steps, and the reaction products of each step sequentially use a little more energy from the initial capture until the initial energy has been depleted and the cycle’s molecules are returned to their starting point and ready for a fresh influx of energy to repeat the cycle.

Atp Photosynthesis And Cellular Respiration Webquest

The diagrams used in this chapter are only intended to provide a glimpse of the incredible complexity of structure and chemistry that takes place at the microscopic level in organisms, and people can be forgiven for doubting that it is all a miraculous accident. I doubt it, too, as . Prokaryotes do not have organelles such as mitochondria, chloroplasts, and nuclei, but even the simplest cell is a marvel of complexity. If we could shrink ourselves so that we could stand inside an average bacterium, we would be astounded at its complexity, as molecules move here and there, are brought inside the bacterium’s membrane, used to generate energy and build structures, and waste products are ejected from the organism. Cellular division would be an amazing sight.

LabBench Activity Plant Pigments and Photosynthesis

Oxygenic photosynthesis uses two systems for capturing photons. The first one (called ) uses . The second one (called because it was discovered before Photosystem II) uses captured photon energy to add an electron to captured carbon dioxide to help transform it into a sugar. That “” is accomplished by the , and an enzyme called Rubisco, , catalyzes that fixation. Below is a diagram of the Calvin cycle. (Source: Wikimedia Commons)

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order