Support or Reject Null Hypothesis
A onesided hypothesis claims that a parameter is either larger smaller than thevalue given by the null hypothesis.
the null hypothesis is not rejected when it is false c.
When you reject a null hypothesis, there's a chance that you're making a mistake. The null hypothesis might really be true, and it may be that your experimental results deviate from the null hypothesis purely as a result of chance. In a sample of 48 chickens, it's possible to get 17 male chickens purely by chance; it's even possible (although extremely unlikely) to get 0 male and 48 female chickens purely by chance, even though the true proportion is 50% males. This is why we never say we "prove" something in science; there's always a chance, however miniscule, that our data are fooling us and deviate from the null hypothesis purely due to chance. When your data fool you into rejecting the null hypothesis even though it's true, it's called a "false positive," or a "Type I error." So another way of defining the P value is the probability of getting a false positive like the one you've observed, if the null hypothesis is true.
Given the null hypothesis that the population mean is equal to a given value _{0}, the for testing against each of the possible alternative hypotheses are:
for : > _{0}
for : _{0}
for : _{0}.
failing to reject the null hypothesis when it is false.
which we get by inserting the hypothesized value of the population mean difference (0) for the population_quantity. If or (that is, ), we say the data are not consistent with a population mean difference of 0 (because does not have the sort of value we expect to see when the population value is 0) or "we reject the hypothesis that the population mean difference is 0". If t were 3.7 or 2.6, we would reject the hypothesis that the population mean difference is 0 because we've observed a value of t that is unusual if the hypothesis were true.
If (that is, ), we say the data are consistent with a population mean difference of 0 (because has the sort of value we expect to see when the population value is 0) or "we fail to reject the hypothesis that the population mean difference is 0". For example, if t were 0.76, we would fail reject the hypothesis that the population mean difference is 0 because we've observed a value of t that is unremarkable if the hypothesis were true.
failing to reject the null hypothesis when it is true.
Now instead of testing 1000 plant extracts, imagine that you are testing just one. If you are testing it to see if it kills beetle larvae, you know (based on everything you know about plant and beetle biology) there's a pretty good chance it will work, so you can be pretty sure that a P value less than 0.05 is a true positive. But if you are testing that one plant extract to see if it grows hair, which you know is very unlikely (based on everything you know about plants and hair), a P value less than 0.05 is almost certainly a false positive. In other words, if you expect that the null hypothesis is probably true, a statistically significant result is probably a false positive. This is sad; the most exciting, amazing, unexpected results in your experiments are probably just your data trying to make you jump to ridiculous conclusions. You should require a much lower P value to reject a null hypothesis that you think is probably true.
The pvalue is p = 0.236. This is not below the .05 standard, so we do not reject the null hypothesis. Thus it is possible that the true value of the population mean is 72. The 95% confidence interval suggests the mean could be anywhere between 67.78 and 73.06.
rejecting the null hypothesis when it is true.

rejecting the null hypothesis when it is false.
If you are able to reject the null hypothesis in Step 2, you can replace it with the alternate hypothesis.

rejecting the null hypothesis when the alternative is true.
In the above example, the value 0.0082 would result in rejection of thenull hypothesis at the 0.01 level.

not rejecting the null hypothesis when the alternative is true.
Contrary to Type I error, Type II error is theerror made when the null hypothesis is incorrectly accepted.
the null hypothesis is rejected when it is true.
It is important to distinguish between biological null and alternative hypotheses and statistical null and alternative hypotheses. "Sexual selection by females has caused male chickens to evolve bigger feet than females" is a biological alternative hypothesis; it says something about biological processes, in this case sexual selection. "Male chickens have a different average foot size than females" is a statistical alternative hypothesis; it says something about the numbers, but nothing about what caused those numbers to be different. The biological null and alternative hypotheses are the first that you should think of, as they describe something interesting about biology; they are two possible answers to the biological question you are interested in ("What affects foot size in chickens?"). The statistical null and alternative hypotheses are statements about the data that should follow from the biological hypotheses: if sexual selection favors bigger feet in male chickens (a biological hypothesis), then the average foot size in male chickens should be larger than the average in females (a statistical hypothesis). If you reject the statistical null hypothesis, you then have to decide whether that's enough evidence that you can reject your biological null hypothesis. For example, if you don't find a significant difference in foot size between male and female chickens, you could conclude "There is no significant evidence that sexual selection has caused male chickens to have bigger feet." If you do find a statistically significant difference in foot size, that might not be enough for you to conclude that sexual selection caused the bigger feet; it might be that males eat more, or that the bigger feet are a developmental byproduct of the roosters' combs, or that males run around more and the exercise makes their feet bigger. When there are multiple biological interpretations of a statistical result, you need to think of additional experiments to test the different possibilities.
The failure to reject does not imply the null hypothesis is true.
NOTE: Excel can actually find the value of the CHISQUARE. To find this value first select an empty cell on the spread sheet then in the formula bar type "=CHIINV(D12,2)." D12 designates the pValue found previously and 2 is the degrees of freedom (number of rows minus one). The CHISQUARE value in this case is 12.07121. If we refer to the CHISQUARE table we will see that the cut off is 4.60517 since 12.07121>4.60517 we reject the null. The following screen shot shows you how to the CHISQUARE value.
Support or Reject Null Hypothesis in Easy Steps
The primary goal of a statistical test is to determine whether an observed data set is so different from what you would expect under the null hypothesis that you should reject the null hypothesis. For example, let's say you are studying sex determination in chickens. For breeds of chickens that are bred to lay lots of eggs, female chicks are more valuable than male chicks, so if you could figure out a way to manipulate the sex ratio, you could make a lot of chicken farmers very happy. You've fed chocolate to a bunch of female chickens (in birds, unlike mammals, the female parent determines the sex of the offspring), and you get 25 female chicks and 23 male chicks. Anyone would look at those numbers and see that they could easily result from chance; there would be no reason to reject the null hypothesis of a 1:1 ratio of females to males. If you got 47 females and 1 male, most people would look at those numbers and see that they would be extremely unlikely to happen due to luck, if the null hypothesis were true; you would reject the null hypothesis and conclude that chocolate really changed the sex ratio. However, what if you had 31 females and 17 males? That's definitely more females than males, but is it really so unlikely to occur due to chance that you can reject the null hypothesis? To answer that, you need more than common sense, you need to calculate the probability of getting a deviation that large due to chance.